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Abstract
Extreme temperatures are one of the leading causes of death and disease in both developed and
developing countries, and heat extremes are projected to rise in many regions. To reduce risk,
heatwave plans and cold weather plans have been effectively implemented around the world.
However, much of the world’s population is not yet protected by such systems, including many
data-scarce but also highly vulnerable regions. In this study, we assess at a global level where such
systems have the potential to be effective at reducing risk from temperature extremes, characterizing
(1) long-term average occurrence of heatwaves and coldwaves, (2) seasonality of these extremes, and
(3) short-term predictability of these extreme events three to ten days in advance. Using both the
NOAA and ECMWF weather forecast models, we develop global maps indicating a first
approximation of the locations that are likely to benefit from the development of seasonal
preparedness plans and/or short-term early warning systems for extreme temperature. The
extratropics generally show both short-term skill as well as strong seasonality; in the tropics, most
locations do also demonstrate one or both. In fact, almost 5 billion people live in regions that have
seasonality and predictability of heatwaves and/or coldwaves. Climate adaptation investments in these
regions can take advantage of seasonality and predictability to reduce risks to vulnerable populations.

Introduction

Extreme temperature is a leading contributor to mor-
bidity and mortality for many of the world’s most
vulnerable people, including infants and the elderly
(Bai et al 2014, Egondi et al 2015, Fouillet et al 2006,
Gosling et al 2008, Hashizume et al 2009, Huynen
et al 2001). Temperature extremes account for 75%
of weather-related deaths in high-income countries
(CRED et al 2015), as well as increases in morbid-
ity (Astrom et al 2011, Li et al 2015). For example,
the 2003 heatwave in France was estimated to cause
15 000 excess deaths, and in Bangladesh, mortality
increases approximately 20%onheat-wavedays (Fouil-
let et al 2006, Nissan et al 2017). In India, a coldwave in

2003 killed more than 900 people, and unusual cold
temperatures were responsible for 370 excess deaths
in Moscow in 2006 (De et al 2005, Revich and
Shaposhnikov 2008).

However, temperature can be considered to be one
of the most predictable meteorological surface variables
(Haiden et al 2015), and extreme temperature early
action systems have proven that they can save lives
around the world (Ebi et al 2004, Tan et al 2007, Toloo
et al 2013, Weisskopf et al 2002).

Heat Health Action Plans and Cold Weather Plans
lay out roles and responsibilities for seasonal prepared-
ness measures, short-term early action, and response
and recovery measures (Public Health England 2015).
For heatwaves, disaster managers provide drinking
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water, cooling shelters, and visits to isolated com-
munity members (Hajat et al 2010a, Knowlton et al
2014). For coldwaves, typical interventions include
provision of blankets, shelter, and financial support for
heating costs to vulnerable households (Daiski 2005,
Fazel et al 2014, Hwang et al 2005, Wolf et al 2010).

Much of the world’s population is not cur-
rently covered by such systems (Bittner et al 2013,
Republique Francaise 2015). The implementation of
extreme weather plans requires substantial capacity by
local agencies, and many governments and civil soci-
ety organizations have shown growing interest in these
plans in recent years (Coughlan de Perez et al 2014,
Fouillet et al 2008, IFRC 2009),

The goal of this study is to identify areas in the
world that can benefit from extreme temperature early
warning systems. To assess where such early action sys-
tems are likely to be impactful, we analyze the following
three factors for all inhabited areas of the world: (1)
long-term occurrence of heatwaves and coldwaves, (2)
seasonality of heatwaves and coldwaves, and (3) short-
term predictability of heatwaves and coldwaves, 3–10
days in advance.

First, to develop maps of the long-term occur-
rence of heatwaves and coldwaves, we need to define a
heatwave and a coldwave. The definition of an impact-
ful extreme event depends on local acclimatization,
demographics, state of health, cultural norms, clothing,
levels of physical activity, and access to temperature-
controlled shelter (Hajat et al 2010b, Reid et al 2009).
In a review of studies on heatwaves and morbidity,
(Li et al 2015) found that effects range from 163.7%
increase in cardiovascular disease in the elderly in
Australia to 19% increase in preterm births in Italy.
A review of global studies found that mortality rates
increase by at least 5% on heatwave days in many cities,
and are responsible for more deaths in the United
States per year than all other natural disasters com-
bined (Astrom et al 2011, Klinenberg 2015). Coldwaves
have been associated with an average of 4% increase
in risk in US cities; one study found a 13% increase
in mortality in Shanghai (Ma et al 2013, Wang et al
2016). A meta review of studies of two-day cold spells
show an overall agreement of an increase in mortality,
especially among the elderly (Ryti et al 2016).

Temperature-mortality curves are normally used
to model the relationship between different mag-
nitudes of temperature extremes and local impact.
Even with access to health data, determining detailed
temperature-mortality relationships is not straightfor-
ward, because of the time-varying nature of population
vulnerability to heat and cold. Where such relation-
ships have been assessed, simple indices of relative
heat and cold tend to have equal association with local
impacts as do more complicated heatwave and cold-
wave definitions (Barnett et al 2010, Dixon et al 2005,
Nissan et al 2017). In fact, most heatwave and coldwave
definitions that have been derived from local mor-
tality relationships tend to show impact at the most

extreme percentiles of the local temperature climatol-
ogy (Astrom et al 2011, Gasparrini et al 2015).

We therefore define heat and cold as extreme
temperatures relative to the local climate; when tem-
peratures are persistently above/below this relative
extreme, we assume that there will be an increase in
morbidity or mortality in the most vulnerable local
groups. These impacts will still be mediated by local
context, including the availability of effective public
health responses and early warning systems.

In the second factor, we investigate where season-
ality can provide opportunities to take early action, by
identifying areas that have a distinct annual cycle of
temperature. Preparedness in advance of the high-risk
months (e.g. summer) would be particularly impor-
tant if short-term forecast skill is poor or if capacity is
limited to maintain an early warning system.

For the third factor, we analyze short-term weather
forecasts, which allow for early action immediately
before and during an extreme event. Here, we use the
word ‘skill’ to refer to the ability of the model to fore-
cast heatwaves or coldwaves correctly, sometimes also
called ‘accuracy’ or ‘goodness’ of the forecast. We are
not aware of any existing global verifications for tem-
perature forecasts that show skill for relative extremes.
Several evaluations of extreme event forecasts have
been done for specific locations, most commonly over
data-rich areas, such as the US (Hamill et al 2013,
Koster et al 2010). Areas with patchy observational
data have rarely been researched, including much of
Africa, as observations areneededboth for initialization
and evaluation.

Extreme events by definition have small sample
sizes, so global forecasts tend to be evaluated for non-
extremes or for extremes aggregated across space, to
increase sample size (Barnston and Mason 2011, Gille-
land et al 2010, Haiden et al 2015, Skok and Roberts
2016). However, forecasts are produced, and action is
taken based on these forecasts, at scales much smaller
than these aggregations. Variations in skill within the
spatial aggregate would be very relevant for districts
and other small locations, where skill differs from the
aggregate. Overall, there is a considerable gap between
current meteorological verification practice and soci-
etal need (Pappenberger et al 2008).

To understand local variability in forecast skill, we
calculate the short-term skill of forecasts of extreme
temperature for individual 1 degree gridboxes around
the world. Large sample sizes are generated from two
reforecast products of 20 and 31 years of daily data,
respectively. We first verify each forecast model against
its own analysis product, thereby generating a global
map of gridbox-level results that is not affected by
observational data availability. To verify the spatial
patterns of predictability, we then carry out point
evaluations in locations with available station data.
This paper does not aim to establish the sources of
predictability in all locations; it rather maps the pre-
dictability itself.
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In this study, we identify where in the world
temperature extremes happen, whether they can be
anticipated as part of a seasonal cycle, and whether
they can be predicted by weather forecasts. We use
reforecast datasets from two major forecasting insti-
tutions: the US National Oceanic and Atmospheric
Administration (NOAA) and the European Centre for
Medium Range Weather Forecasts (ECMWF), and
therefore our results are a first-order approximation
of the global patterns forecast skill. Based on the results
of the seasonality and short-term predictability anal-
ysis, we identify the optimum mix of preparedness
measures for different regions of the globe.

Methods

Where do heatwaves and coldwaves occur?
Risk materializes due to a combination of hazard, vul-
nerability, and exposure. To see where these hazards
occur, we define an extreme event threshold relative
to the local climatology. A daily temperature value
that is labeled as, say, the 95% percentile value implies
that the temperature is higher than this value on 5%
of the days in the climatological record. While the
threshold represents an extreme event relative to what
the general population is acclimatized to, vulnerabil-
ity will vary between groups of people and will be
affected by public health capacity.

Individual heatwaves are therefore defined as the
maximum daily temperature (Tmax) exceeds the 95th
percentile of all maximum daily temperatures derived
from the local climatology AND the minimum daily
temperature (Tmin) exceeds the 95th percentile of
all minimum daily temperatures, for two consecu-
tive days. Coldwaves are episodes during which the
maximum daily temperature (Tmax) is less than the
5th percentile of all maximum daily temperatures
AND the minimum daily temperature is less than
the 5th percentile of all minimum daily temperatures
for two consecutive days. The percentiles are relative
to the climatology of each model in each location.
We evaluated alternative percentiles and durations
in the sensitivity analysis. Any two-day period that
fulfills this definition is considered a single event,
regardless of whether it overlaps with another two-day
‘event’.

Both of the global models used here produce
‘reforecasts’, or hindcasts, using the current model ver-
sion to forecast historical dates. These data can then be
used to evaluate the skill of the current forecast model
in operation. The NOAA ‘GEFS Reforecast v2’ product
is produced at 3- and 6 hourly intervals from 1985–
2015 (31 years), at 1 degree resolution. The ECMWF
reforecasts are produced at the resolution of the cur-
rent operational forecast (∼18 km in this study) at
6 hourly timestep for only two days per week; they
are run on Mondays and Thursdays for the past 20
years from the date the forecast is issued (ECMWF

2017). We then regrid these forecasts using a bilinear
method to the 1 degree resolution. For both products,
we calculate the daily minimum and daily maximum
temperatures, making the assumption that the magni-
tude of the maxima/minima are well captured by data
at this time resolution.

To estimate whether or not heatwave and cold-
wave hazards occur in a particular location, we calculate
the frequency of heatwave and coldwave days in Day
0 (first lead time) of the NOAA reforecast, which is
later used for the verification. Because the ECMWF
reforecasts are only available for two days per week,
we use the ECMWF analysis product, which is avail-
able daily and is used to initialize the forecast. Heat
and cold ‘waves’ of consecutive extreme hot/cold
days rarely occur in some places, therefore this study
focuses on areas that have an average of more than
five heatwaves/coldwaves in a 31 year period.

Lastly, we combine hazard frequency with UN-
adjusted population density estimates for 2015, from
the Center for International Earth Science Information
Network (CIESEN Center for International Earth Sci-
ence Information Network 2016), to identify locations
that have human exposure to these hazards.

Where do heatwaves/coldwaves follow a distinct sea-
sonal pattern?
In this section, any 90 day period is defined as a ‘season’,
to avoid theuseof calendarmonths.Wewant to identify
how many heatwaves happened, on average across the
years, in each season. Starting with January 1, we iden-
tify how many years had a heatwave/coldwave during
the 90 days startingon January 1. We then repeat for the
90 days starting on January 2, etc, until we have done
this for 366 possible seasons. We map locations with
a distinct annual cycle, in which at least one of those
possible 90 day seasons had a heatwave/coldwave, as
defined above, in more than half of the years of anal-
ysis. The data used is the Day 0 (first lead time) of
the NOAA reforecasts and the analysis product of the
ECMWF forecasts.

Where is there skill in short-term forecasts of heat-
waves/coldwaves?
Here, we analyze how well the two global models can
predict heatwaves and coldwaves at lead times of 3 days
and 10 days, to provide a global perspective. National
forecasts and limited area models might perform bet-
ter than these results, due to local data assimilation
or topographic resolution. They might also perform
more poorly, in cases where there are data and tech-
nology gaps. Therefore, our results provide a first
indication, and can also serve as a point of departure
and comparison for local model results.

Because station data for temperature are limited in
many places of the world, we carry out two verifica-
tions, one verification comparing each model against
its own analysis, and the other verifying each model
against station data from sample locations around
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the world. For the first, we analyze the NOAA and
ECMWF forecasts by verifying heatwaves and cold-
waves at lead times 3 and 10 days against the first
lead time of the forecast (NOAA), and ERA-Interim
Land reanalysis (ECMWF), as mentioned above. Some
biases may exist; for example, the ECMWF hind-
cast system is derived from a more recent model
version with a higher resolution than the reanalysis
against which it is compared.

For the second verification, we selected 57
freely-available stations from the Global Historical
Climatology Network Daily Database, version 2, to
provide a sample from different regions and climates.
Many large citieswere selected; cities areoftenareas that
suffer the largest impact of heatwaves due to the con-
centration of vulnerability and exposure, as well as the
urban heat island effect. Urban preparedness actions
can also reach many people relatively quickly. All sta-
tions selected have at least five heatwaves or coldwaves
during the 1985–2015 period. To compare station data
with forecasted temperatures, we extract lead times 3
and 10 days of the gridded forecast products using
nearest neighbor interpolation to the coordinates of
the station. Because the heatwave and coldwave def-
initions use percentiles relative to the climatology of
the data itself, we do not carry out a correction for the
urban heat island effect, which is likely not picked up
in the reanalysis but would occur in the station data,
or any elevation differences between the station and
model.

Both forecasts have 11 ensemble members, and we
calculate the probability of the extreme event as the
number of ensembles that forecast the event divided
by the number of members. This is based on several
assumptions, including that the ensembles represent
equally likely future scenarios and that there are enough
ensembles to represent the full rangeof possible futures.
However, with such a small number of ensembles, it
is not possible for them to represent the full range
of possible futures. For example, if all 11 ensemble
members show a heatwave in 10 days, this would be
recorded as a 100% chance of a heatwave. To avoid
an overconfident forecast, in which all ensembles fore-
cast the event or non-event, we have added a single
‘naı̈ve ensemble member’ as a benchmark that always
forecasts the event at 0.5, instead of 0 or 1 in the nor-
mal ensemble members, as in (Broecker 2012). With
the addition of this member, the probability of the
event will never be 0% or 100%. In our example, if all
ensembles forecasted a heatwave in 10 days, the forecast
would be 11.5/12, or a 96% chance of a heatwave.

There are many ways to calculate the ‘skill’ of a fore-
cast. Here, we calculated the Area Under the Receiver
Operating Characteristic Curve (AUC) to assess the
skill for each location at each lead time, which assesses
both the false alarms and the correct forecasts (Mason
and Graham 2002). Results range from 0.5 (not skill-
ful) to 1 (essentially perfect). We determine 95%
confidence intervals using 2000 stratified bootstrap

replicates to generate resampled AUCs (Robin et al
2011).

We carried out a sensitivity analysis on the forecast
verification, to estimate the impact of the parameters
used in this study. First, we perturbed the definition
of a heatwave and coldwave, changing the temperature
percentiles and duration. Second, we used determinis-
tic skill scores (Symmetric Extremal Dependence Index
and False Alarm Ratio) to verify the ensemble mean
forecast. Lastly, we repeated the NOAA analysis using
the same time period as was used for the shorter
ECMWF analysis. In all of these cases, the global maps
of skill were very similar to those shown here, leading
to the same conclusions about which locations tend to
have more predictability than others.

Results

Where do heatwaves and coldwaves occur?
Heatwaves and coldwaves occur in different regions.
Almost the entire world experiences heatwaves (blue
areas in figure 1(a)), with the exception of isolated
locations in the tropics, including Indonesia, Central
Africa, and Western South America. In contrast, large
areas of the world do not experience sustained extreme
cold, according to both models. This includes north-
ern South America, Central Africa, parts of East and
West Africa, the south east of India, and much of the
Maritime Continent.

There are fewer extreme heat and cold events in
areas with tropical climates (intensity of blue in figure
1). The northern latitudes and the Eastern coast of
India tend to have the largest number of heatwaves.
For coldwaves, the higher latitudes tend to have the
greatest number.

There are no significant differences between the
NOAA and ECMWF climatology, therefore we plot
here only the NOAA results (figure 1). There are some
minor discrepancies in the Pacific Islands, with NOAA
modeling more events than ECMWF.

Where is there seasonality of heatwaves/coldwaves?
Focusing on areas where heatwaves and coldwaves
occur and there is human exposure, we identify regions
that have a distinct seasonality that could be used
for seasonal preparedness. In both the NOAA and
ECMWF datasets, almost all of the northern extrat-
ropics has such a distinct seasonality (dark green areas,
figure 2). Parts of East and Southern Africa, Southern
South America, and the Pacific Islands also show a dis-
tinct seasonality; however, the climatology of the two
models displays differing estimates of the size of these
Southern Hemisphere regions.

For coldwaves, there is a clear latitudinal divide.
Regions that are poleward of 15 degrees latitude
have distinct seasons of coldwaves, with exceptions
including the interior of Central America, parts of
Mozambique, and southern Australia.
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Figure 1. Climatological occurrence and human exposure of (a) heatwaves and (b) coldwaves for the NOAA model. Results are similar
to ECMWF model output. Cream areas have a population density of less than 1 person per km2, and do not show heatwave/coldwave
information. Brown areas indicate locations with fewer than five heatwaves/coldwaves in a 31 year period, and therefore excluded from
this analysis. Blue areas are the regions where heatwaves or coldwave do occur, and the shade of blue indicates the average number of
heatwave-days or coldwave-days per year.

Figure 2. Seasonality of heatwaves (top row) and coldwaves (bottom row) in areas with exposure for the NOAA (left column)
and ECMWF (right column) models. Dark green indicates regions that have a distinct seasonality that could be used for seasonal
preparedness. In these regions, there is at least one 90 day season in which there was a heatwave/coldwave in half of the years analyzed.
Light green areas do not have this seasonality. Cream colored areas have low human exposure to heatwaves or coldwaves, a combination
of having fewer than 1 person/km2 or few extreme events (combination of cream and brown in figure 1).
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Where is there skill in short-term forecasts of heat-
waves/coldwaves?
To summarize the results of the short-term pre-
dictability, we define several categories of forecast
characteristics (lead time, skill level), suggestive for
the type of preparatory action that could be con-
sidered. These ‘categories’ should be adjusted based
on the lead-time and skill levels needed for spe-
cific local actions, and they are used here only as
a general guide to the global results (full results
available in supplementary information available at
stacks.iop.org/ERL/13/054017/mmedia).

For heatwave forecasts at long lead times of 10 days
or more, both models show the highest skill in much of
Eastern Europe, the Middle East, Eastern India, most
of Russia, and Central US/Canada (figures 3(a) and
(b)). In these areas, we expect that there should be
time for ‘advance action’ to be taken to prepare for an
extreme event (dark red color in figures 3(a) and (b)).
The ECMWF forecasts see a greater portionof land area
covered by this category than NOAA: 44% and 34% of
populated areas, respectively. In particular, ECMWF
shows higher skill than the NOAA forecasts at longer
lead times for much of the US, China, and Southern
Europe.

These patterns are confirmed in the station data
verification (figure 3(c)), in which the skill obtained
by verifying the model against its analysis product is
strongly correlated with the skill calculated by verifying
themodel against stationdata.While themodel analysis
verification overestimates skill relative to the station
verification, both sets of results generally agree about
which cities have better skill than others.

Skill across the tropics is varied, ranging from little
skill at any lead time in Central Africa and the Maritime
Continent to high skill at long lead times in much of
Brazil and parts of East Africa. While the two models
show differing results for many locations, there is an
indication that at least one of the models could have
skill in parts of East Africa, Southern Africa, and South
America.Neithermodel is able to skillfully predict heat-
waves in the Caribbean, much of Central Africa, and
much of the Maritime Continent. In summary, pre-
dictability for heatwaves at 3–10 days is generally high
in the extratropics, but varies from location-to-location
in the tropics.

When it comes to coldwaves (figure 4), the NOAA
and ECMWF models show broadly similar patterns of
skill. In both models, ‘advance action’, or good skill
at the 10 day lead time, is possible in much of the
US, Canada, North and Eastern Europe, China, Rus-
sia, and Southeast Asia. Good skill at the 3 day lead
time, or ‘rapid action’, is possible in Southern Africa,
Southern South America, Central America, and Aus-
tralia. While the NOAA model shows areas of patchy
skill in the Maritime Continent, this is not reflected in
the ECMWF model.

One of the largest gradients of skill occurs in
India, where both models have good skill in forecasting

coldwaves in Western India, transitioning into little to
no skill in and near Bangladesh.

Discussion

Where should we be investing in extreme tempera-
ture early action plans, and what should they look
like?
A large percentage of the world’s inhabited surface
area could benefit from heatwave and coldwave plans
that incorporate both seasonal preparedness actions as
well as action based on shorter-term early warnings
(see black areas of figure 5). The sum of population
living in areas with both seasonality and short-term
predictability is 5 billion people for heatwaves, and
4.9 billion for coldwaves. This combination of season-
ality and short-term predictability is ideal, as seasonal
preparedness can lay the groundwork for supplies
and training needed to ensure short-term action is as
extensive and rapid as needed.

In the extratropics, seasonality and predictability
are almost uniformly available. In these regions, atmo-
spheric blocking causes persistent heat and cold events,
as does feedback from dry soils and snow, both of which
increase predictability of extreme events, even offering
the potential to extend lead-times into sub-seasonal
timeframes that would be valuable for enhanced pre-
paredness (Fischer et al 2007, Nissan et al 2017, Purich
et al 2014).

In the Caribbean, many locations of the Maritime
Continent, and many Pacific Islands, there is little pre-
dictability in the short-term for heatwaves. This lack
of predictability is likely due to the fact that many
islands are too small to be accurately represented by
the resolution of these global models, and heatwaves
can be extremely localized. There is low variability in
temperature in maritime areas, such that changes in
large-scale circulation do not bring remarkably dif-
ferent temperatures to the region. Higher resolution
models might be able to better resolve the micro-
climates and small temperature variations in these
areas. Further research is needed to determine the
health impacts of relative extremes in these regions,
where absolute variability is not as large as in the
extratropics.

However, many island locations do show good
short-term predictability for coldwaves. Station data
from Cuba demonstrate this contrast; coldwave pre-
dictability is much greater than heatwave predictability,
likely because the coldwaves are caused by larger fea-
tures such as extratropical troughs that have ventured
equatorward. In regions that have this contrast, cold
weather early warning systems would be an impactful
investment.

The opposite is true on the small west coast strip
of South America, where some of the highest skill in
predicting heatwaves overlaps with the lowest skill in
predicting coldwaves, reflected both in the model

6
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Figure 3. Skill in predicting extreme heat events in the (a) NOAA and (b) ECMWF models, classified by how the model could be used
to take action. In the top two plots, skill is calculated per gridbox by verifying each model against its own analysis. Dark red indicates
areas with good skill at the 10 day lead time, classified as ‘advance action’ (AUC of ROC > 0.8). Red indicates remaining areas with
good skill at the 3 day lead time, classified as ‘rapid action’ (AUC of ROC > 0.8). Pink indicates remaining areas with limited skill at
the 3 day lead time, classified as ‘minimum rapid action’ (0.7 < ROC < 0.8). Grey areas have little skill (AUC of ROC < 0.3), and
cream-colored areas have no human exposure. The bottom plot (c) shows a comparison of verification results of the model against
its analysis (x-axis) with verification of the model against station data (y-axis). The area under the ROC Curve is plotted for all cities
marked with a black star on the global maps, for NOAA (blue) and ECMWF (purple). Error bars indicate 95% confidence intervals.

analysis and in station data from Lima, Peru. The
predictability for heatwaves is likely derived when the
region occasionally receives anomalously warm water
off the coast in El Nino events, which has health impli-
cations on the local population (Checkley et al 2000).

In many regions in the east of South America,
there is no strong seasonality for either heatwaves or
coldwaves, but there is good short-term predictability
for these events. In these cases, early warning systems
would need to be ready throughout the entire year
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Figure 4. As in figure 3, for coldwaves.

to activate short-term preparedness actions at short
notice, especially to support those who might not be
adequately preparing for such events.

Acrossmost of the low latitudes inAfrica, the clima-
tology of heat extremes is remarkably different between
the NOAA and ECMWF models (Donat et al 2014).
Each model identifies specific locations across the con-
tinent where there is seasonality (figure 3) or skillful
heatwave prediction (figure 4). Therefore, model vali-
dation and selection will be critical for heat early action
in those regions, and multi-model results might be

more skillful than single models. There are limits to
using global data for local action, and local observa-
tions should be used in locations seeking to verify these
results.

The Sahel stands out as an area that is likely to have
excellent predictability for coldwaves, as well as a dis-
tinct seasonal cycle that could be used for preparedness.
Such short-term forecasts could be used to take pre-
paredness actions for climate- and weather-sensitive
health effects e.g. influenza or respiratory illnesses in
the region (Jusot et al 2012).
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Figure 5. Compilation of figures 1-4, indicating what type of preparation could be possible for (a) heatwaves and (b) coldwaves around
the world. Black areas offer both skillful short-term forecasts and seasonality of heatwaves/coldwaves in either the NOAA or ECMWF
models. Green areas are regions where only seasonality could be used for preparation. Red areas are regions where only skillful short
term forecasts can be used for preparation. Cream colored areas have no exposure or have neither distinct climatology nor forecast
skill.

In much of India and Bangladesh, there is a
strong seasonality and predictability for heatwaves.
Heatwaves tend to be confined to the pre-monsoon
summer season, before the rains arrive, which sup-
presses high temperatures. Predictability on weather
timescales arises from a characteristic atmospheric cir-
culation pattern and a deficit of normal rainfall at the
beginningof themonsoon,which is reflected inanoma-
lously low soil moisture for this time of the year (Nissan
et al 2017). Models that better represent land-surface
interaction are likely to perform better in predicting
heatwaves in this region.

For coldwaves, however, Bangladesh does not see
predictability in either model. Coldwave patterns that
are associated with large-scale variability such as the
El Niño Southern Oscillation do not extend eastward
to Bangladesh (Ratnam et al 2016). Diagnostic cli-
mate research is needed to understand the possible
reasons for this discrepancy, which may pertain to
dynamic weather patterns responsible for coldwaves

in the Ganges Delta that are not well-captured by the
models.

Areas for further research
While the maps produced here provide a first indica-
tion of regions in which seasonal preparedness and/or
early warning systems could be beneficial, our haz-
ard definitions were generalized over large areas, and
shouldbe testedwith localmorbidity andmortality data
where possible. In particular, it would be important to
assess the differential vulnerability of at-risk groups.
For example, migrants are not necessarily adapted to
the same temperatures as the local population, and
they may be both vulnerable and exposed to hazardous
weather. In addition, climate change could increase
or decrease risk in many locations, particularly for
regions that currently have low risk (Forzieri et al
2017). These regions should use local temperature data
to monitor any changes to temperature distributions
in a changing climate.
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In addition, current forecast skill of these two
global models does not represent the full predictabil-
ity that could be realized with further research in
many regions. For example, soil moisture is known
to improve predictability in many regions of the world,
such as Bangladesh, but reliable initialization of soil
moisture in the models is not straightforward. Africa,
theMaritimeContinent, andSouthAsia sawpatchyand
inconsistent skill between the models; further research
is needed to understand the limits and drivers of pre-
dictability of temperature extremes in these regions.
Targeted research in areas where there are clear drivers
of predictability but poor model skill could enable the
development of early warning systems in less-served
areas.

While global models tend to be the only infor-
mation available for the world’s most vulnerable
locations, locally-calibrated models that combine local
observations with forecasts are likely to increase skill
in locations that can implement this technology.
Improvements in temperature observation systems
will be necessary in many places to enable this ver-
ification and calibration, and post-processing and
multi-model ensembles could further improve local
skill. These results should be treated as a first approx-
imation of global patterns in skill and should be
verified locally.

The model evaluation carried out here focused on
current model skill, which would be achieved by using
these models without alteration. Operational skill on
the ground could be more limited than this, as ECMWF
forecasts, for example, are not freely available in many
countries, and operational forecasts could be derived
from unverified or hedged forecasts that do not reach
the skill levels found here.

While we do evaluate seasonality as a tool for pre-
paredness, we do not evaluate seasonal temperature
forecasts in this study. With a few exceptions, most
seasonal forecasts do not estimate the probability of
extreme heat or cold events during the season, but
focus on seasonal average temperatures. Seasonal fore-
casts of extreme events, however, could be developed,
evaluated, and integrated into early warning systems
where useful.

Conclusions

Extreme temperatures remain responsible for signif-
icant spikes in morbidity and mortality, yet we have
shown that, for much of the world, information on
seasonality and/or short-term forecasts can help to
anticipate extreme events with enough time to take
action. Nearly 5 billion people can take advantage of
this for heatwaves and for coldwaves. For these regions,
policies tobuild resilience andadaptation to (changing)
extremes should not be confined to structural adapta-
tion, but also build the capacity to act on seasonality
and early warnings.

As the climate warms, increased impact from heat
extremes is expected in much of the Earth’s land
surface, evenwhile taking intoaccountgradual acclima-
tization to higher temperatures (Huang et al 2011,
IPCC 2012). Early warning systems are a powerful tool
to adapt to a potential rise in risk. The development
of heat-health early warning systems should be con-
sidered for implementation at scale in the regions with
predictability (see figure 5(a)). Such systems have the
potential to save many lives. These should be under-
pinned by an evidence base on the efficiency of different
preparedness measures for heatwaves and coldwaves in
different climates and levels of urbanization, as well
as research on the success factors for well-functioning
early action systems. Here, we indicate where early
warning systems may potentially work, but many local-
ities might require resources or capacity to take action
on these warnings. Investment in such capacity, such as
the establishment of Forecast-based Financing systems
(Coughlan de Perez et al 2015), can ensure that early
action is taken when an extreme event is predicted.
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